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The basis of an efficient VLSI architecture for parallel computations involved in the simula- 
tion of the percolation model is presented. This architecture provides a spatially distributed 
set of pseudorandom numbers, which are required in the local non-deterministic decisions at 
the various sites in the lattice, using pseudorandom number generators based upon cellular 
automata. It is shown that the time-intensive task of sampling the percolation configurations 
is expedited by the inherent parallelism of this approach. Furthermore, the architecture can 
also be used to group occupied sites into clusters in parallel and report pertinent information 
to a host computer. In this sense it acts as a hardware expert, or percolation coprocessor, on 
the computer system bus. This architecture can provide computational speedup of many 
orders of magnitude over conventional simulation using a serial computer. Measurements 
from a prototype constructed using a custom VLSI chip implementation indicate that a 
hypothetical 1OOO x 1000 square lattice could be completely updated in 50 ns. The validity of 
this approach is verified by computer simulation of the behaviour of the architecture which 
derived the correct critical exponents for the percolation model. 0 1989 Academic Press, Inc. 

I. INTRODUCTION 

In this work we will use concepts developed in [l, 21 which are based on the 
recent discovery that effectively random behaviour may be derived from elementary 
or primitive l-dimensional (1D) cellular automata arrays even though the local 
logical rules are deterministic [3, 43. 

A novel architecture for the simulation of the percolation model will be 
described. Here we will make extensive use of computer simulation since the 
objective of this correspondence is to show that correct results are obtained from 
a computer architecture which will speed up such simulations. Subsequently, results 
will be shown which are derived from the proposed architecture. Many of the 
2-dimensional problems which will be discussed here have exact analytic solutions 
[S] but are nevertheless employed since they are the easiest to understand and to 
make quantitative comparisons with. One should also note that many percolation 
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problems, when considered in a higher dimensionality than two can only be 
analysed via computer simulation. Here we will examine three of the six common 
critical exponents for the percolation model using solution techniques taken from 
Sur [6] and Kirkpatrick [7]. The calculated critical exponents are 

(i) The rate of growth of the largest cluster as a function of site probability, 
derived from the scaling relation [S] 

S(L) z Lila, (1) 

where S(L) is the largest cluster in a lattice of size L. 

(ii) The lattice size dependency of the probability that percolation has 
occurred, derived from the scaling relation [9] 

dP’(p, L) = Ll/v 
4 ’ 

(2) 

where P’(p, L) is the probability that percolation has occurred in a lattice of size L. 

(iii) The percentage of sites in the largest cluster as a function of p, derived 
from the relation [lo] 

R(p L)- L-B’“X, 3 

where 

R(P, L) = 
number of sites in largest cluster 

number of sites in the sample 

(3) 

(4) 

and X, is an appropriate scaling function of L”‘(p-p,)/p,. 

Other common quantities in the percolation model for which critical exponents 
are often calculated are site correlation or spanning length (the maximum separa- 
tion of two sites in a cluster), pair connectedness (the probability that two sites 
separated by a given distance are members of the same cluster), and the conduc- 
tivity (the conductance across a corresponding random resistor network). Here we 
have not considered these other quantities, but the three quantities which we do 
study are representative of the calculations which must be carried out in order to 
study the percolation model. It is not expected that any uncalculated critical 
exponent will deviate further from its known or expected value than those critical 
exponents which are calculated in this work. 

II. PERCOLATION ARCHITECTURE 

The computational work in any percolation simulation on a typical serial com- 
puter consists of the actual generation of the percolation lattice with site probability 
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p and the calculation of the appropriate quantity of interest. The architecture which 
we consider here will be oriented towards the simple 2-dimensional square lattice. 
Other lattice types and dimensions can be simulated using the same architectural 
technique with an approrpriately modified interconnection scheme. To simulate 
percolation on a lattice we must generate an independent pseudorandom number 
for each site, compare it with a given probability p, and occupy the site accordingly. 
This operation is repeated over the entire N= L2 sites of the square lattice. There- 
fore, we require at least O(N) time to generate a single copy of the lattice using a 
serial computer. For the three critical exponents above we must calculate the 
probability of percolation and the size of the largest cluster at any probability p. To 
calculate whether the lattice has a percolating cluster and the size of the largest 
cluster requires no more than 0(N2) time using the Hoshen and Kopelman cluster 
labelling algorithm [ 111. 

An obvious question to ask is which aspects of the percolation model simulation 
can be accomplished in parallel. While some portions of the algorithm which can 
be parallelised are fairly obvious’ the best method to implement such a parallel 
computer is not. We note that the larger the lattice which can be simulated the 
greater the interest in the simulation. The largest simulation which has presently 
been carried out used a 160,000 x 160,000 square lattice [ 121. 

The remaining problem is the calculation of the critical exponents. It is possible 
to build a special computer which can both simulate the system and calculate the 
critical exponents for the percolation model. However, this is not necessarily the 
most expedient solution. The disadvantages of such an approach stem from the fact 
that the actual calculation of the critical exponents requires data memory and 
floating point calculations. However, it is well understood by anyone who has 
attempted to simulate the percolation model that very little time is actually spent 
calculating the desired exponents. Most of the computer time is used in generating 
new lattice configurations and grouping the occupied sites into clusters. Further- 
more, operations using the clusters are generally very rapid given that site 
clustering has already occurred. Therefore, little is to be gained by building a 
computer dedicated solely to the calculation of critical exponents. Much can, 
however, be gained by building a device which can generate new lattices and form 
clusters quickly. This device would act as a special purpose coprecessor to a general 
purpose host computer and because of the nature of its specialised task could be 
made to operate very efficiently. Therefore, we will consider an implementation 
where a host computer will determine the actual critical exponents and do 
operations on clusters generated by a special purpose percolation coprocessor. 

In order to efficiently execute the percolation simulation the architecture of Fig. 1 
is proposed. Each processor consists simply of a pseudorandom number generator 
(PRNG), comparator, and storage element, or site latch. The site probability, p, is 
made available to each comparator over a global bus and the pseudorandom 
number from the PRNG is compared to it. Finally, the site latch is turned high 

1 Occupying sites based on the site probability. 



PERCOLATION SIMULATION 79 

FIG. 1. Basic percolation simulation architecture. 

( >p) or low ( <p) accordingly. Each site in the lattice is assigned a unique 
processor. Therefore, after each clock cycle we have defined a new percolation 
lattice, as compared to at least O(N) time for a serial updating technique. In 
addition, the time for a single clock cycle is quite small ( 6 50ns). Each simulation 
step on a typical serial computer with a software PRNG is comparatively large 
( > 5~s) for a single site. In addition of course, to update the entire lattice the serial 
method must be applied N times; the present approach only once. The overall speed 
improvement is approximately lOON. It should be noted that the size of the lattice 
which can be simulated is restricted by the number of processing sites available 
which is in turn dependent in an inverse way on the size of each processor. 

The heart of any nondeterministic computation is the pseudorandom number 
generator. For simulations such as those discussed here it is known that a non- 
random PRNG will result in erroneous simulation results. Thus, it is critical that 
the PRNG used be of high quality. However, at the same time we are restricted to 
using only a small area for the PRNG since we are targeting a VLSI implementa- 
tion. It has been shown that conventional algorithmic PRNG techniques such as 
the multiplicative congruential and additive feedback generators are not suitable for 
an architecture such as that described here because of silicon area and processing 
time considerations [ 11. In addition, typical hardware techniques such as those 
based on shift registers are also unsuitable due to poor quality randomness or 
excessive area and time. In [ 1,2] a hardware PRNG based upon cellular automata 

581/84/l-6 
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(CA) is developed and is shown to possess more desirable implementation 
properties (small area, local communication) and/or randomness than conventional 
PRNG techniques. However, the architecture is not PRNG dependent and another 
PRNG technique may be substituted if desired. 

A cellular automaton evolves in discrete steps with the next value of one site 
determined by its previous value and that of a set of sites called the neighbour sites. 
The extent of the neighbourhood can vary depending, among other factors, upon 
the dimensionality of the cellular automaton under consideration. In a simple 
l-dimensional cellular automaton, the next value at a site depends only on its pre- 
sent value and the values of the left and right neighbours. The cellular automaton 
may posses null boundary conditions (i.e., the first and last sites consider their 
missing neighbour site to always have a zero value) or be cyclically connected (i.e., 
one considers the cellular automaton to form a ring thereby making the first and 
last sites neighbours). Here only binary l-dimensional cellular automata with two 
neighbour sites (left and right) will be considered, but it is possible to use any 
desired modulus, dimension, or neighbour set. For binary cellular automata of this 
type each site must determine its next value on the basis of the eight possible 
present values of itself, and the left and right neighbours (i.e., 000, 001, 010, etc.). 
The truth table for the next state values corresponding to each possible input form 
a binary number the decimal equivalent of which is referred to as the rule number 
under the classification scheme of Wolfram [13]. 

While the description of l-dimensional cellular automata is very simple, the 
different CA rules are capable of a very wide range of global behaviour. Wolfram 
has characterised four basic classes of behaviour in l-dimensional cellular automata 
[14]. Class 1 automata evolve to homogeneous final global states, class 2 to 
periodic structures, class 3 exhibit chaotic behaviour, and class 4 yield complicated 
localised and propagating structures. For pseudorandom number generation it has 
been shown that several class 3 CA rules produce high quality pseudorandom 
number sequences [ 1, 2,4]. In the present paper we employ the CA rule based 
PRNG discussed in [ 1, 2). It should be noted that, as with all PRNGs, some 
correlation in the number sequence is present [15]. But it is unclear whether the 
particular correlations present in CA-based PRNGs will affect the results of a 
percolation simulation. Again, we emphasize the PRNG technique independence of 
the architecture. 

The regularity of processing sites in such a percolation processor makes it an 

FIG. 2. CMOS layout of 16 bit percolation site processor. 
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FIG. 3. Architecture to group occupied sites into clusters. 

ideal candidate for VLSI implementation. The size of such a processor is directly 
dependent on register size. However, we can make estimates based on a fixed 
register size and scale up or down as appropriate for different register sizes. A 16-bit 
site processor layout is pictured in Fig. 2. The size of this processor using a 3pm 
single metal CMOS technology is 0.838 mm*. Therefore it is possible to have 25 
such processors simulating a 5 x 5 lattice on a single 4.8 x 4.8 mm die.* It is 
straightforward to implement the site processors in such a way as to be able to 
combine chips to form larger lattices. However, it is not realistic to consider 
employing a unique processor for each site in the lattice for lattices of arbitrary size. 
Therefore, we will restrict ourselves to lattices of L d 1000 for which we assume 
there is a unique processor for each site in the lattice. We will return to the problem 
of lattices larger than 1000 x 1000. 

It is possible to use the proposed percolation architecture solely to dramatically 
increase the speed of updating the lattice. However, if we could calculate the size 
of the clusters and other relevant properties we could accelerate the simulation even 

* This technology (3 pm CMOS) available to us at present is not the state of the art. Implementation 
using more advanced technology would dramatically increase the number of site processors per chip. For 
example, on a triple metal lym technology using a 10 x 10 mm die one could easily place over 1000 site 
processors. 
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more dramatically. It is possible to quickly group the occupied sites of the lattice 
into clusters if we superimpose the multiprocessor architecture of Fig. 3 onto the 
architecture of Fig. 1. Here we assign each processor a unique cluster number 
corresponding to its location in the lattice. For example, in Fig. 3 we have assigned 
processors in the first row to have values 0 to L - 1, the second row processors are 
assigned numbers L to 2L - 1, and so on. This percolation computer operates as 
follows. First we utilise the underlying architecture of Fig. 1 to decide which sites 
are occupied. Occupied sites take their assigned cluster value while unoccupied sites 
take on the value of co, or some other appropriately large number. We then 
proceed to synchronously update all sites according to the following algorithm. If 
a site is occupied, the next cluster value is selected as the lowest of its four 
neighbouring cluster values (remember we are presently considering only square 
2-dimensional lattices) and itself. For example, in Fig. 4a we see an 8 x 8 lattice with 
p = 0.5313, Fig. 4b shows the same lattice initialised using the above cluster 
numbering assignment, and in Fig. 4c we see the cluster numbers one synchronous 
update later. The synchronous updating procedure continues to take place until all 
sites belonging to the same cluster have had their cluster numbers merged together. 
The worst case time for this procedure would be L(L - 1)/2. The final cluster 
numbering configuration for Fig. 4a is shown in Fig. 4d. 

.  .  l l l .  .  .  .  .  2 3 4 .  .  .  

l l l .  l .  .  . . 11 13 14 15 

l l l .  .  l .  .  .  18 19. 21 .  23 

.  l l .  .  .  l .  24. 26. .  29. 31 

l l l l l .  l 32. 34 35 36 31 39 

l l .  9. ’ .  l 40. 42 43 .  .  46 41 

l l l l .  .  .  .  48 49 51 .  .  54 

l l l ’ .  .  .  .  56 57 58 .  .  .  62 .  

2 2 3 . . . . . 2 2 2 . . . 

. 3 . 13 13 14 . . . 2 2 2 2 

18 11 . 13 15 . 2 2 2 . 2 
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24 26 34 35 29 . 3124 . 2 2 2 2 . 2 

32 34 35 . 46 39 24 , 2 2 . . 2 2 

40 48 43 . . 46 . 24 24 , 2 . 2 . 

48 49 51 . . . 54 242424...2. 

w 63 

FIG. 4. Operation of percolation computer on an 8 x 8 square lattice: (a) 8 x 8 square lattice with 
p = 0.5313; (b) initial&d lattice with cluster number assignment; (c) cluster numbers after one update; 
(d) final cluster numbering assignment. 



PERCOLATION SIMULATION 83 

Cluster Number Register 

FIG. 5. Architecture to group sites into clusters for row at a time lattice generation. 

Determining whether or not the largest cluster is infinite is quite easy if we realise 
that a spanning cluster must be present both at the top and bottom of the lattice. 
Therefore, if any sites on the bottom of the lattice have a final cluster number less 
than L then we have a spanning cluster. Therefore, for a 1000 x 1000 lattice we can 
group the occupied sites into clusters and determine if a spanning cluster exists in 
at most 500,000 update steps (Fig. 5). A small prototype has been constructed using 
a 3pm single metal CMOS technology and measurements of the circuit have shown 
the operating speed to be at least 20 MHz. In order to simulate large lattices it is 
necessary to construct the percolation coprocessor using many chips (Fig. 6). 

..222... 

. . . 2 . 13 13 13 

. . 2 2 . 13 . 13 
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24 24 . 2 . . 13 . 
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FIG. 6. Operation of row at a time percolation computer on lattice of Fig. 4; (a) initialised second 
row; (b) second row after cluster-numbering completed; (c) fifth row after cluster-numbering completed; 
(d) fully cluster-numbered lattice. 
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Therefore, the simulation speed may be limited by the rate at which interchip com- 
munication can be accomplished. It is not unreasonable to consider a board level 
switching rate of 50 ns, so for the purposes of this work we will consider this to be 
the maximum clock speed of the current architecture even though the advanced 
VLSI technologies which will be required for a final version of this architecture will 
allow the internal clock rate on the chip to be much greater. Thus, in about 25 ms 
we can generate a 1000 x 1000 lattice, group the occupied sites into clusters, and 
determine if a spanning cluster is present. 

To determine the size of the largest cluster is a much more difficult problem. 
However, it is possible for the host computer to offload the final cluster numbers 
from the percolation computer and count the number of sites in each cluster. This 
remains a significant enhancement over serial computer simulation techniques since 
much of the time is spent grouping occupied sites into clusters. Other calculations 
for quantities such as pair connectedness and site correlation are also significantly 
faster since the clusters have already been formed. Finally, we note that is also 
possible to place processing elements which can perform cluster sizing calculations 
into the architecture. However, such processing elements are considerably more 
complex, especially since they require data memory, so they are not considered in 
this work. 

III. SIMULATION RESULTS FOR THE PERCOLATION COMPUTER 

Simulations of the percolation computer with cellular automata-based PRNGs 
were carried out and yielded the following results for the exponents defined 

FIG. 7. Size of S(L) at p, versus L using the percolation computer. 
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FIG. 8. Log-log plot of dP’(p, L)/dp vs L using the percolation computer. 

previously in Eqs. (1) to (4). The percolation threshold was found to be 
0.5915 f 0.0023. The rate of increase of the largest cluster S(L) vs lattice size is 
shown in Fig. 7 from which we calculate l/a to be 1.800 f 0.096. A plot of 
dP’(p, L)/dp, where P(p, L) is the probability the percolation has occured on a 
lattice of size L is shown in Fig. 8, yielding the value of the critical exponent v to 
be 1.434 f0.030. Likewise for R(p, L), the percentage of occupied sites in the 
largest cluster, we observe the behavior of Fig. 9 from which we derive a value of 

FIG. 9. R(p, L) versus p for various lattice sizes using percolation computer. 
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TABLE I 

Percolation Critical Exponents 

Exponent Standard Present work Others Reference 

PC 0.5916 + 0.0022 0.5915 f  0.0023 0.5928 Csl 
l/a 1.798 + 0.093 1.800 + 0.096 1.89 181 

; 0.144 1.439 + 0.015 0.145 1.434 * 0.030 0.14 1.35 Cl61 1161 

Note. Standard refers to standard serial computer percolation simulations done for this work; 
Present work refers to simulation results for the present percolation computer; Others refers to 
representative results which have been reported elsewhere. 

fi of 0.145. These results are summarized in Table I. There is a small discrepancy 
between the results which have been calculated here and those which have been 
published elsewhere [8, 161. However, there is close agreement between the results 
for the percolation computer and a standard percolation simulation based on algo- 
rithmic PRNG using a serial computer. Therefore, we can conclude that the 
proposed parallel percolation computer yields similar critical exponents to normal 
serial percolation simulation. The discrepancies between the critical exponents 
calculated here and those published elsewhere may be due to several factors such 
as smaller register size (here 16-bit was used) and a smaller number of samples. 
However, it is encouraging that percolation simulations using the proposed 
percolation computer and a standard serial computer method yielded the same 
results. 

It would be much more expensive in terms of both area and time to use any 
PRNG other than the CA-based schemes employed in this approach. In addition, 
one can see that, because of the vast number of PRNGs required, the topological 
regularity of the CA approach provides a very clear advantage. Finally we note that 
it has been found that standard LFSR-based and some multiplicative congruential 
PRNGs are inadequate for Monte Carlo simulations [17] since they do not 
produce correct critical exponents. We observe that the critical exponents 
calculated using the CA-based percolation computer provided approximately 
correct values. 

IV. USING RENORMALISATION ON THE PERCOLATION COMPUTER 

Extensions to the percolation architecture could include the use of renormalisa- 
tion group principles [ 183 to extrapolate the infinite lattice critical exponents. The 
basic concepts required to implement renormalisation as applied to percolation are 
quite straightforward. Essentially we slowly integrate out small scale fluctuations 
and obtain information on successively larger and larger scales. This is done by 
replacing a small block of sites on the lattice with one site representing gross, or 
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average, behaviour. For example, in majority rule renormalisation, a block of 3 x 3 
sites is represented by one occupied site if the majority of sites are occupied and an 
unoccupied site if the majority of sites are not occupied. This procedure is repeated 
many times progressively reducing the lattice size by a factor of I for each renor- 
malisation, where 1 is the size of the block of sites being replaced by a single site. 
The result is that for p > 0.5 the new pl, representing the density on the renor- 
malised lattice, moves quickly towards a value of 1.0, while for p c 0.5 the new p1 
moves towards 0.0. However, for p = 0.5 the new p, will also equal 0.5. This critical 
value of p = 0.5 derives simply from the majority renormalisation rule and is not 
associated with the critical percolation value. The critical exponents are extracted 
from the rate at which the value of p1 moves towards 1.0 or 0.0. The problem here 
is that for many lattices simple majority rule renormalisation is not adequate to 
extrapolate infinite lattice behaviour. In the above example we saw that for p > 0.5 
the value of p1 moved quickly towards 1.0. Thus, for p = pc = 0.5928 on the square 
lattice p1 will move towards 1.0 and it is not possible to extract critical behaviour 
since p1 is not equal to pc. Therefore, another renormalisation rule is required if we 
are to study critical behaviour for site percolation on a square lattice using renor- 
malisation techniques. For example, [ 193 studied renormalisation on a square 
lattice by replacing a block of sites with an occupied site only if a spanning cluster, 

FIG. 10. Renormalisation architecture operating on 2 x 2 blocks using a renormalisation rule due 
to [18]. 
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or connecting path, existed in the block. Reynolds [20, 91 utilised a position-space 
renormalisation procedure whereby a block of 2d sites was replaced by a single site 
and d bonds, requiring that the d bonds reflect the connectivity of the block which 
it is replacing. 

In any case we see that construction of hardware to implement any renormalisa- 
tion procedure, other than the simple majority rule case, requires significant 
processor resources. An example of a simple renormalisation group architecture is 
shown in Fig. 10. Here we implement the renormalisation rule of [19]. For 
simplicity we use a block size of 2 x 2. To determine whether an infinite cluster 
exists in a 2 x 2 block merely requires checking if each row has an dccupied site. A 
renormalised site representing sites (x, y), (x + 1, y), (x + 1, y + l), and (x, y + 1) in 
the old lattice will be stored in position (x/2, y/2) in the new L/2x L/2 lattice, 
necessitating a shift to the left and up by x/2 and y/2 site processors. This will 
require additional shifting hardware at each site processor. Finally, we assign 
cluster numbers to each occupied site in the new lattice and invoke the site 
clustering process. As larger blocks or more complicated renormalisation rules are 
considered the associated computing hardware becomes considerably more 
complex. Thus, a percolation computer implementing renormalisation will not be 
further considered in this work. However, we note that if a percolation computer 
is to be constructed which itself calculates the critical exponents, it is probably best 
to use a renormalisation approach to quickly reduce the amount of cluster data 
which must be processed and offloaded to the host computer. 

Another extension to the percolation computer is the inclusion of different 
lattices and dimensions other than the 2-dimensional square lattice which we 
considered here. To include other lattice types, for example, the triangular or 
honeycomb lattices, one need merely increase the connectivity of the site processors 
to account for the increased number of neighbours. Otherwise the method of opera- 
tion is precisely the same. Similarly for higher dimensions one need merely increase 
the neighbour connections at each site processor to account for the increased 
neighbour set. Admittedly for d > 2 longer physical distances between neighbouring 
processors will occur due to the increased connectivity, but the method of 
implementation and operation remains the same. For the processors under 
consideration here the distance between processors is not the dominant factor 
relating to operating speed. Rather, actual processing time dominates. No simula- 
tions were performed on percolation operating on different lattice types or higher 
dimensions since it is not expected that the validity of the percolation computer will 
be affected by having more neighbours. Neither do we expect the computer time for 
simulations on the percolation computer to increase dramatically as the neighbour 
set increases. 

V. CONCLUSIONS 

In this correspondence we have shown that VLSI is an appropriate medium for 
specialised hardware with which to simulate the percolation model. Speedup of 
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several orders of magnitude has been accomplished. Due to an efficient PRNG and 
clustering algorithm we can exploit high speeds and minimal clock cycles. Having 
correct critical exponents justifies the cellular automata-based PRNG, since near 
the phase transition, correlations in the pseudorandom number sequence will 
adversely affect the results. 
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